Non-accessible critical points of Cremer polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-accessible Critical Points of Cremer Polynomials

It is shown that a polynomial with a Cremer periodic point has a non-accessible critical point in its Julia set provided that the Cremer periodic point is approximated by small cycles. Stony Brook IMS Preprint #1995/2 February 1995

متن کامل

The Solar Julia Sets of Basic Quadratic Cremer Polynomials

In general, little is known about the exact topological structure of Julia sets containing a Cremer point. In this paper we show that there exist quadratic Cremer Julia sets of positive area such that for a full Lebesgue measure set of angles the impressions are degenerate, the Julia set is connected im kleinen at the landing points of these rays, and these points are contained in no other impr...

متن کامل

On the Location of Critical Points of Polynomials

Given a polynomial p of degree n ≥ 2 and with at least two distinct roots let Z(p) = {z : p(z) = 0}. For a fixed root α ∈ Z(p) we define the quantities ω(p, α) := min { |α − v| : v ∈ Z(p) \ {α} } and τ(p, α) := min { |α − v| : v ∈ Z(p′) \ {α} } . We also define ω(p) and τ(p) to be the corresponding minima of ω(p, α) and τ(p, α) as α runs over Z(p). Our main results show that the ratios τ(p, α)/...

متن کامل

Approximation by Critical Points of Generalized Chebyshev Polynomials

We show that any compact, connected set in the plane can be approximated by the critical points of a polynomial with only two critical values. Date: April 2011. 1991 Mathematics Subject Classification. Primary: 30C62 Secondary:

متن کامل

On Biaccessible Points in the Julia Setof a Cremer Quadratic

We prove that the only possible biaccessible points in the Julia set of a Cremer quadraticpolynomialare the Cremer xed point and its preimages. This gives a partial answer to a question posed by C. McMullen on whether such a Julia set can contain any biaccessible point at all.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2000

ISSN: 0143-3857,1469-4417

DOI: 10.1017/s0143385700000754